Copied to
clipboard

G = C3×C32.A4order 324 = 22·34

Direct product of C3 and C32.A4

direct product, metabelian, soluble, monomial

Aliases: C3×C32.A4, C33.2A4, C62.27C32, C3.A43C32, (C3×C62).4C3, C3.9(C32×A4), (C2×C6).9C33, C32.23(C3×A4), (C2×C6)⋊23- 1+2, C223(C3×3- 1+2), (C3×C3.A4)⋊9C3, SmallGroup(324,134)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C3×C32.A4
C1C22C2×C6C3.A4C3×C3.A4 — C3×C32.A4
C22C2×C6 — C3×C32.A4
C1C32C33

Generators and relations for C3×C32.A4
 G = < a,b,c,d,e,f | a3=b3=c3=d2=e2=1, f3=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bc-1, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 250 in 104 conjugacy classes, 42 normal (9 characteristic)
C1, C2, C3, C3, C3, C22, C6, C9, C32, C32, C32, C2×C6, C2×C6, C2×C6, C3×C6, C3×C9, 3- 1+2, C33, C3.A4, C62, C62, C62, C32×C6, C3×3- 1+2, C3×C3.A4, C32.A4, C3×C62, C3×C32.A4
Quotients: C1, C3, C32, A4, 3- 1+2, C33, C3×A4, C3×3- 1+2, C32.A4, C32×A4, C3×C32.A4

Smallest permutation representation of C3×C32.A4
On 54 points
Generators in S54
(1 21 18)(2 22 10)(3 23 11)(4 24 12)(5 25 13)(6 26 14)(7 27 15)(8 19 16)(9 20 17)(28 53 39)(29 54 40)(30 46 41)(31 47 42)(32 48 43)(33 49 44)(34 50 45)(35 51 37)(36 52 38)
(2 8 5)(3 6 9)(10 16 13)(11 14 17)(19 25 22)(20 23 26)(28 34 31)(29 32 35)(37 40 43)(39 45 42)(47 53 50)(48 51 54)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)
(1 52)(3 54)(4 46)(6 48)(7 49)(9 51)(11 29)(12 30)(14 32)(15 33)(17 35)(18 36)(20 37)(21 38)(23 40)(24 41)(26 43)(27 44)
(1 52)(2 53)(4 46)(5 47)(7 49)(8 50)(10 28)(12 30)(13 31)(15 33)(16 34)(18 36)(19 45)(21 38)(22 39)(24 41)(25 42)(27 44)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,21,18)(2,22,10)(3,23,11)(4,24,12)(5,25,13)(6,26,14)(7,27,15)(8,19,16)(9,20,17)(28,53,39)(29,54,40)(30,46,41)(31,47,42)(32,48,43)(33,49,44)(34,50,45)(35,51,37)(36,52,38), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(37,40,43)(39,45,42)(47,53,50)(48,51,54), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (1,52)(3,54)(4,46)(6,48)(7,49)(9,51)(11,29)(12,30)(14,32)(15,33)(17,35)(18,36)(20,37)(21,38)(23,40)(24,41)(26,43)(27,44), (1,52)(2,53)(4,46)(5,47)(7,49)(8,50)(10,28)(12,30)(13,31)(15,33)(16,34)(18,36)(19,45)(21,38)(22,39)(24,41)(25,42)(27,44), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,21,18)(2,22,10)(3,23,11)(4,24,12)(5,25,13)(6,26,14)(7,27,15)(8,19,16)(9,20,17)(28,53,39)(29,54,40)(30,46,41)(31,47,42)(32,48,43)(33,49,44)(34,50,45)(35,51,37)(36,52,38), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(37,40,43)(39,45,42)(47,53,50)(48,51,54), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (1,52)(3,54)(4,46)(6,48)(7,49)(9,51)(11,29)(12,30)(14,32)(15,33)(17,35)(18,36)(20,37)(21,38)(23,40)(24,41)(26,43)(27,44), (1,52)(2,53)(4,46)(5,47)(7,49)(8,50)(10,28)(12,30)(13,31)(15,33)(16,34)(18,36)(19,45)(21,38)(22,39)(24,41)(25,42)(27,44), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,21,18),(2,22,10),(3,23,11),(4,24,12),(5,25,13),(6,26,14),(7,27,15),(8,19,16),(9,20,17),(28,53,39),(29,54,40),(30,46,41),(31,47,42),(32,48,43),(33,49,44),(34,50,45),(35,51,37),(36,52,38)], [(2,8,5),(3,6,9),(10,16,13),(11,14,17),(19,25,22),(20,23,26),(28,34,31),(29,32,35),(37,40,43),(39,45,42),(47,53,50),(48,51,54)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54)], [(1,52),(3,54),(4,46),(6,48),(7,49),(9,51),(11,29),(12,30),(14,32),(15,33),(17,35),(18,36),(20,37),(21,38),(23,40),(24,41),(26,43),(27,44)], [(1,52),(2,53),(4,46),(5,47),(7,49),(8,50),(10,28),(12,30),(13,31),(15,33),(16,34),(18,36),(19,45),(21,38),(22,39),(24,41),(25,42),(27,44)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)]])

60 conjugacy classes

class 1  2 3A···3H3I···3N6A···6Z9A···9R
order123···33···36···69···9
size131···13···33···312···12

60 irreducible representations

dim11113333
type++
imageC1C3C3C3A43- 1+2C3×A4C32.A4
kernelC3×C32.A4C3×C3.A4C32.A4C3×C62C33C2×C6C32C3
# reps1618216818

Matrix representation of C3×C32.A4 in GL6(𝔽19)

100000
010000
001000
000700
000070
000007
,
100000
0110000
007000
000100
0000110
000007
,
1100000
0110000
0011000
0001100
0000110
0000011
,
100000
010000
001000
0001800
0000180
000001
,
100000
010000
001000
0001800
000010
0000018
,
010000
001000
1100000
000070
000007
000100

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,7],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,18],[0,0,11,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,7,0,0,0,0,0,0,7,0] >;

C3×C32.A4 in GAP, Magma, Sage, TeX

C_3\times C_3^2.A_4
% in TeX

G:=Group("C3xC3^2.A4");
// GroupNames label

G:=SmallGroup(324,134);
// by ID

G=gap.SmallGroup(324,134);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,162,650,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^2=e^2=1,f^3=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c^-1,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
×
𝔽